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Abstract. Standard SU(2) Heavy Baryon Chiral Perturbation Theory is extended in order to include
the case of small or even vanishing quark condensate. The effective lagrangian is given to O(p2) in its
most general form and to O(p3) in the scalar sector. A method is developed to efficiently construct the
relativistic baryonic effective lagrangian for chiral SU(2) to all orders in the chiral expansion. As a first
application, mass- and wave-function renormalization as well as the scalar form factor of the nucleon is
calculated to O(p3). The result is compared to a dispersive analysis of the nucleon scalar form factor
adopted to the case of a small quark condensate. In this latter analysis, the shift of the scalar form factor
between the Cheng-Dashen point and zero momentum transfer is found to be enhanced over the result
assuming strong quark condensation by up to a factor of two, with substantial deviations starting to be
visible for r = ms/m̂ . 12.

1 Introduction

It is generally accepted that the chiral symmetry of mass-
less QCD is realized in the Nambu-Goldstone mode. More
precisely, it is ascertained that the QCD vacuum spon-
taneously breaks chiral symmetry down to the diagonal
subgroup U(3)V . This can actually been proven from first
principles if a vanishing θ-vacuum is assumed, and pro-
vided there are Nf ≥ 3 massless flavours and no coloured
states in the spectrum (colour confinement). [1,2] In accor-
dance with Goldstone’s theorem, eight massless Goldstone
bosons appear, each coupled via the coupling constant F0
to a conserved axial-vector current. The physics of these
Goldstone bosons can be described by a low energy ef-
fective theory, called Chiral Perturbation Theory (ChPT)
[3,4]. The masses of the Goldstone bosons are generated
by explicit symmetry breaking terms in proportion to mq,
the masses of the light quarks q = u, d, and s. Since mq is
small compared to the typical mass scale ΛH ≈ 1 GeV of
the lightest massive hadrons not protected by chiral sym-
metry, the effects of mq can be treated as a perturbation.

The coupling constant F0 is an order parameter and a
non-vanishing value F0 6= 0 is a necessary and sufficient
condition for spontaneous breakdown of chiral symmetry
(SBχS). The actual mechanism of SBχS is not yet under-
stood, however. The light quark condensate in the chiral
limit, 〈q̄q〉, and the dimensionful parameter

B0 = −F−2 〈q̄q〉 (1.1)
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play a special role in this respect. Two scenarios seem to
be theoretically viable: Large B0 in the range of the mass
scale ΛH , corresponding to strong condensation of quarks
in the QCD vacuum, or small B0 in the range of F0 (or
even zero) corresponding to SBχS realized via extended
delocalized quarks with high “mobility”. [5] Although Lat-
tice QCD simulations seem to point towards a large quark
condensate, there are other attempts like in [6] where a
small condensate is reported. Given the uncertainties in-
herent in these methods, it is fair to assume the problem
to be theoretically undecided. For a critical discussion of
the evidence resulting from QCD sum rules, we refer to
the review article by Stern [7].

In the standard formulation of ChPT a large quark
condensate, say B0 ≈ ΛH is assumed. The aim of gen-
eralized ChPT (GChPT) is to relax this assumption, i.e.
to allow for small or even vanishing B0. [8] Technically
speaking, these assumptions amount to different counting
rules for the light quark masses and the quark condensate,
i.e. [8,9]

mq = O(p2), B0 = O(1) standard ChPT (1.2)
mq = O(p), B0 = O(p) generalized ChPT, (1.3)

where p is a generic symbol for a low energy quantity.
GChPT thus reorders the expansion of the effective la-
grangian of low energy QCD. Summed up to all orders
it coincides with the standard approach. At each finite
order, however, GChPT takes into account contributions
which in the standard case are treated as higher order
terms. Since this reordering concerns the explicit symme-
try breaking sector only, the difference between standard
and generalized ChPT will be in proportion to the light
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quark masses and hence small1. The generalized approach
allows to experimentally probe the size of the quark con-
densate [9]. The most promising case to discriminate ex-
perimentally between the two scenarios is provided by low-
energy ππ-scattering, [11] where precise data should be
available in the near future. [12]

Chiral symmetry also restricts the low energy inter-
actions of pions with baryons. Using the so called heavy
baryon formalism (HBChPT), the πN–system at low en-
ergies has been investigated extensively and put to many
tests. [13] It is natural to ask whether it is possible to
gain insight into the mechanism of SBχS from the bary-
onic sector, as well. Incidentally, the first evidence for a
possible small light quark condensate was obtained by an
analysis of the Goldberger-Treiman discrepancy. [14] How-
ever, this quantity turned out to be very sensitive to the
pion-nucleon coupling constant and therefore the analysis
remained inconclusive. Also, only the leading order correc-
tions were considered. Other single baryon processes like
πN → Nπ or γN → Nππ, where abundant and precise
data are available, are potential candidates for testing the
assumption of large B0 made in SChPT. In order to make
such tests possible, however, HBChPT has to be adapted
to the principles of the generalized approach. Any cal-
culation performed in SHBChPT can provide consistence
checks only, of course. The aim of the present article is
to fill this gap, i.e. to formulate generalized heavy baryon
chiral perturbation theory (GHBChPT). Two crucial as-
sumptions will be made. First, the quark mass counting
rules of GChPT as given in (1.3) will be employed. This
follows directly from the pure Goldstone Boson sector.
Second, we assume that the expectation values of non-
singlet operators between one-nucleon states scale with
ΛD

χ , where Λχ ≈ 1 GeV and D denotes the canonical mass
dimensions of these correlation functions (no other small
scales like B0 present). In particular, we treat dimension-
less couplings like e1 in the effective πN–lagrangian

LπN = e1Ψ̄tr(χ†U + U†χ)Ψ, χ = s + ip, (1.4)

as quantity of order unity. Here, Ψ denotes the nucleon
field, s and p are scalar and pseudoscalar sources, respec-
tively, and U contains the pion field in the usual man-
ner (c.f. Sect. 2 for definitions). The term in (1.4) counts
therefore as order p.

Having made these assumptions, GHBChPT can be
formulated along the same lines as in the standard case.
At each order in the chiral expansion, the effective la-
grangian contains additional terms compared to the stan-
dard formulation. One of the main problems will be to
obtain estimates for these additional coupling constants.
Given the many observables available in the πN–system,
the task is not hopeless. It remains to be seen whether
similar clean tests as those in ππ–scattering can be de-
vised, ultimately leading to a better understanding of the
mechanism of spontaneous chiral symmetry breakdown.
This work is the first step of such a program.

1 Recently, interesting consequences of a vanishing light
quark condensate have been derived for the spectrum of vector-
and axial-vector states in the large Nc-limit of QCD. [10]

The article is organized as follows. In Sect. 2 the ef-
fective chiral lagrangian of GHBChPT is given to O(p2)
in it’s most general form and to O(p3) in the scalar sec-
tor. Mass- and wave-function renormalization to order p3

are considered in Sect. 3. In Sect. 4 we calculate the scalar
form factor of the nucleon to one-loop and compare with
a dispersive theoretic evaluation adapted to the case of a
small quark condensate. Finally, we draw the conclusions
in Sect. 5. In Appendix A we give a method to efficiently
construct the relativistic baryonic effective lagrangian for
chiral SU(2) to all orders. Appendix B contains a collec-
tion of loop functions employed in the article.

2 The effective heavy baryon lagrangian
in the generalized approach

Our starting point is the QCD lagrangian with two mass-
less quarks coupled to external sources [4]2

L = L0
QCD + q̄γµ

(
vµ +

1
3
v(s)

µ + γ5aµ

)
q − q̄(s− iγ5p)q,

q =
(

u
d

)
, (2.1)

where L0
QCD is the lagrangian of two-flavour QCD in the

absence of external sources. The isotriplet vector (axial-
vector) currents vµ (aµ) are hermitian and traceless ma-
trix fields, whereas the current v

(s)
µ is an isosinglet. The

scalar and the pseudo-scalar sources, s and p respectively,
are also hermitian matrix fields in isospin space, but in
general are not traceless. The lagrangian (2.1) is sym-
metric with respect to chiral transformations g ∈ G =
SU(2)L×SU(2)R. The QCD vacuum is assumed to spon-
taneously break chiral symmetry down to the diagonal
subgroup H = SU(2)V . According to Goldstone’s theo-
rem, the spectrum of the theory contains three massless
states φ, the pions, which are gathered in u(φ), an el-
ement of the chiral coset space, i.e. u(φ) ∈ G/H. Ex-
plicit symmetry breaking terms in proportion to the light
quark masses will give small masses to the pions. Techni-
cally, this is incorporated by setting the scalar source to
s =M = diag (mu, md) at the end of the calculation.

The low-energy effective theory of pions and nucleons
is obtained by the CCWZ construction: chiral symmetry is
realized non-linearly on the Goldstone fields φ and matter
fields Ψ (nucleons) via [15]

u(φ)
g→ gRu(φ)h(g, φ)−1 = h(g, φ)u(φ)g−1

L , (2.2)

Ψ =
(

p

n

)
g→ h(g, φ)Ψ , (2.3)

g = (gL, gR) ∈ SU(2)L × SU(2)R .

The compensator field h(g, φ) ∈ SU(2)V is defined by
(2.2) and characterizes the non-linear realization. The ef-
fective lagrangian consists of all invariants under chiral

2 In this paper we consider only chiral SU(2). Accordingly,
the SU(3) constants F0 and B0 are replaced by their SU(2)
counterparts F and B, respectively
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transformations which in addition are hermitian and in-
variant under the discrete transformations P, C, and T.
In order to construct these invariants explicitly, it is con-
venient to define the following fields

uµ = i
{
u†(∂µ − irµ)u− u(∂µ − i`µ)u†} ,

Γµ =
1
2

{
u†(∂µ − irµ)u + u(∂µ − i`µ)u†} ,

χ± =u†χu† ± uχ†u , χ = (s + ip) ,

fµν
± =uFµν

L u† ± u†Fµν
R u ,

v(s)
µν = ∂µv(s)

ν − ∂νv(s)
µ .

(2.4)

Here, the right and left handed fields rµ = vµ + aµ, `µ =
vµ−aµ are the external gauge fields with associated non–
Abelian field strengths

Fµν
R = ∂µrν − ∂νrµ − i [rµ, rν ] ,

Fµν
L = ∂µ`ν − ∂ν`µ − i [`µ, `ν ] .

(2.5)

Notice the missing factor 2B in the definition of χ± in
(2.4). The covariant derivative ∇µ acts on all fields to the
right of it and is formally given by

∇µ = ∂µ +
(
Γµ − iv(s)

µ

)
,

←−∇µ =←−∂µ −
(
Γµ − iv(s)

µ

)
.

(2.6)

We are now ready to discuss the consequences of gen-
eralized ChPT for the pion-nucleon effective lagrangian.
Before launching into the discussion of generalized heavy
baryon ChPT, however, let us recapitulate some facts
about the Goldstone boson sector. The idea of a small or
vanishing quark condensate leads to a different counting
rule for quark mass terms, and consequently to a reorder-
ing of the chiral lagrangian. Consider the expansion of the
squared pion mass

M2
π = 2Bm̂ + 4Am̂2 , m̂ =

1
2

(mu + md) . (2.7)

The constant A is an order parameter which has been
estimated by chiral sum rules to be of the order unity [9].
In the standard approach B is assumed to be in the range
set by the hadronic mass scale ΛH . Thus the first term in
(2.7) is the leading contribution and the second term is
suppressed by a factor mq. Equation (2.7)then implies the
formal counting rule: B ∼ O(ΛH) and m̂ ∼ O( p2

ΛH
), where

p is a small external momentum. Accordingly, the effective
lagrangian is ordered in local, chiral invariant terms L(k,l),
with k powers of covariant derivatives and l powers of
quark mass insertions [9]

Leff = L̃(2) + L̃(4) + . . . , (2.8)

where

L̃(d) =
∑

k+2l=d

L(k,l) . (2.9)

The tilde on L̃(d) signals that the associated coupling con-
stants are those of standard ChPT.

If B is small, however, both terms in (2.7) are of the
same order and, in general, equally important. The quark
mass mq and the coupling constant B, thus, must count
as order O(p). The effective lagrangian Leff must there-
fore be expanded not only in powers of covariant deriva-
tives and quark mass insertions, but in powers of B as
well [8,9]

Leff =L(2) + L(3) + . . . , (2.10)

where

L(d) =
∑

j+k+l=d

BjL(k,l) . (2.11)

For instance, the leading order p2 lagrangian of the Gold-
stone boson sector consists of terms with either two covari-
ant derivatives and no mass insertions or of terms with no
covariant derivatives and two mass insertions [16]

L(2)
ππ =

F 2

4

[〈
DµUDµU†〉 + 2B

〈
χ†U + χU†〉

×A
〈(

χ†U
)2

+
(
χU†)2

〉
+ Zp

〈
χ†U − U†χ

〉2

×h0
〈
χ†χ

〉
+ h′

0
(
det χ† + det χ

)]
, (2.12)

where U = u2 and the covariant derivative is defined as

DµU = ∂µU − irµ U + iU lµ . (2.13)

Of course, (2.12) could be expressed in terms of the chiral
fields defined in (2.4).

To summarize, (2.8) and (2.10) state that summed to
all orders the standard and generalized approach coincide,
namely they describe the same effective lagrangian. To any
finite order, however, they differ, since in the generalized
case terms are taken into account which the standard case
relegates to higher order.

Turning now to the baryonic sector, our starting point
is the generating functional for Green functions of single
nucleon processes defined by

eiZ[j,η,η̄] = N
∫ [

dudΨdΨ̄
]

(2.14)

× exp
[
i

{
S̃M + SMB +

∫
d4x

(
η̄Ψ + Ψ̄η

)}]
.

S̃M and SMB are the mesonic and relativistic pion-nucleon
effective actions, respectively. The tilde on S̃M accounts
for the fact that in (2.14) the nucleon degrees of freedom
have not yet been integrated out. The form of the mesonic
action remains the same, c.f. the leading order expression
given in (2.12) above. The coupling constants in general
are different, however, since they might get contributions
from closed nucleon loops. [17] In the pion-nucleon sec-
tor the relativistic lowest-order chiral lagrangian takes the
form [18]
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L(1)
πN = Ψ̄

[
i 6∇ −m +

◦
gA

2
6uγ5 + e1 〈χ+〉 (2.15)

+e2

(
χ+ − 1

2
〈χ+〉

)
+ e3γ5 〈χ−〉+ e4γ5χ−

]
Ψ .

A characteristic feature of generalized ChPT is the ap-
pearance of terms in proportion to e1, . . . e4 already at
leading order. In standard ChPT they are present only at
next-to-leading order. We have chosen new symbols for the
corresponding coupling constants in order not to confuse
these couplings with those of standard ChPT.

Next we take the non-relativistic limit in order to get
rid of the large nucleon mass term, thereby allowing for
a consistent low energy expansion. [19–21] Projecting the
nucleon field Ψ onto its velocity dependent light and heavy
components Nv and Hv respectively [22]

Nv(x) = exp[imv · x]P+
v Ψ(x) ,

Hv(x) = exp[imv · x]P−
v Ψ(x) ,

P±
v =

1
2
(1± 6v) , v2 = 1 ,

(2.16)

the pion–nucleon Lagrangian is brought to the form

LπN = N̄vANv + H̄vBNv

+N̄vγ0B†γ0Hv − H̄vCHv . (2.17)

The mesonic field operators A, B, C admit chiral expan-
sions of the form

A = A(1) + A(2) + A(3) + . . . ,

B = B(1) + B(2) + . . . , (2.18)
and

C = C(0) + C(1) + . . . , (2.19)

where A(n) denotes a quantity of order pn. Explicitly, the
leading order expressions are given by

A(1) = iv · ∇+
◦
gAS · u + e1 〈χ+〉+ e2

(
χ+ − 1

2
〈χ+〉

)
,

B(1) = i 6∇⊥ −
◦
gA

2
v · uγ5 + e3γ5 〈χ−〉+ e4γ5χ− ,

C(0) = 2m ,

C(1) = iv · ∇+
◦
gA S · u− e1 〈χ+〉 − e2

(
χ+ − 1

2
〈χ+〉

)
,

∇⊥
µ = ∇µ − vµv · ∇ , Sµ = iγ5σ

µνvν/2 . (2.20)

Performing a Gaussian integration in the generating func-
tional, the fields Hv are integrated out. Introducing
sources corresponding to Nv and Hv, respectively,

ρv = eimv·xP+
v η, Rv = eimv·xP−

v η , (2.21)

and shifting also the variable Nv, the generating functional
can be brought to the form

eiZ[j,η,η̄] = N
∫

[dudNvdN̄v] exp
[
iS̃M + i

∫
d4x

×
{

N̄v(A + γ0B†γ0C−1B)Nv + R̄C−1R

−(ρ̄ + R̄C−1B)(A + γ0B†γ0C−1B)

×(ρ + γ0B†γ0C−1R)
}]

. (2.22)

In HBChPT, the matrix C−1 in (2.22) is expanded in
a power series in 1/m before performing the functional
integral over Nv. Then, this functional integral yields only
a constant. However, as pointed out in [17], we know the
effect of the interchange of limits must be to change S̃M

into SM , with SM the usual effective action of ChPT.
The standard procedure of ChPT can be applied, [4] and
we refer to [17] for the relation of the T-matrix elements
obtained in HBChPT and the fully relativistic S-matrix
elements one is actually looking for. We come back to this
point in Sect. 3 when we consider mass and wavefunction
renormalization.

Here we are concerned only with the effective low en-
ergy action of the pion-nucleon system resulting from the
analysis above

SπN =
∫

d4x L̂πN

=
∫

d4x N̄v(A + γ0B†γ0C−1B)Nv , (2.23)

where C−1 is understood to be expanded in inverse powers
of the nucleon mass. We thus obtain the chiral Lagrangian
of GHBCHPT up to O(p3) in its general form

A + γ0B†γ0C−1B

= A(1)

+A(2) +
1

2m
γ0B†

(1)γ
0B(1)

+A(3) +
1

2m

(
γ0B†

(2)γ
0B(1) + γ0B†

(1)γ
0B(2)

)
− 1

4m2 γ0B†
(1)γ

0C(1)B(1) +O(p4) . (2.24)

In the following we detail the derivation of the explicit
effective pion-nucleon lagrangians up to order p3. A recipe
of how to construct the relativistic invariants for chiral
SU(2) to all orders in the chiral expansion is given in App.
A. We follow closely the presentation given in [23].

At lowest order the lagrangian is given by A(1)

L̂(1)
πN = N̄v

[
iv · ∇+

◦
gAS · u + e1 〈χ+〉

+ e2

(
χ+ − 1

2
〈χ+〉

)]
Nv . (2.25)

The operators associated with the coupling constants e1
and e2 are a new feature of the generalized approach. In
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the standard case these two operators are treated as oper-
ators of the order O(p2) and they are associated with the
couplings a3 and a4 respectively [23].

The relativistic chiral lagrangian at order O(p2) has
four types of contributions:

L(2)
πN = L(2,0) + L(1,1) + L(0,2) + B L(1)

πN . (2.26)

The term L(2,0) is the same as in the standard case. The
appearance of L(1,1) and of L(0,2) already at the order
O(p2) is characteristic of the generalized approach. L(1,1)

can be read off from the O(p3) lagrangian given in [23] and
L(0,2) counted formally as anO(p4) contribution. Since the
loop divergences associated with virtual pion and nucleon
exchange are at least of orderO(p3), the last term in (2.26)
only leads to a finite renormalization of L(1)

πN and may be
neglected. In order to construct the effective lagrangian at
O(p2) we have used the following set of operators [23]:

〈uµuµ〉,→ A(2)

iσµνuµuν , σµνf+µν ,

σµνv(s)
µν , 〈uµuν〉iγµ∇ν + h.c.→ A(2), B(2)

[6u , χ−] , γ5 6u 〈χ+〉 , γ5γµ 〈uµχ+〉 ,
γ5 [6∇, χ−] , γ5γµ 〈∂µχ−〉 → A(2), B(2)

〈χ+〉2 , χ+ 〈χ+〉 , 〈χ+χ+〉 ,
〈χ−〉2 , χ− 〈χ−〉 , 〈χ−χ−〉 → A(2) . (2.27)

In the derivation of (2.27) we have omitted all operators,
which can be eliminated with a redefinition of the nucleon
field Ψ as given in the appendix A, e.g. the term

〈uµuν〉∇µ∇ν + h.c.

can be eliminated with (A.43). The two pieces at order
O(p2) in (2.24) are then found to be

A(2) =
c2

m
(v · u)2 +

c3

m
u · u

+
1
m

εµνρσvρSσ

[
ic4uµuν + c6f+µν + c7v

(s)
µν

]
+

c8

m
[χ−, v · u] +

c9

m
iSµ[∇µ, χ−] +

c10

m
iSµ〈∂µχ−〉

+
c11

m
S · u〈χ+〉+ c12

m
Sµ〈uµχ+〉

+
c13

m
〈χ+〉2 +

c14

m
χ+ 〈χ+〉+ c15

m
〈χ+χ+〉

+
c16

m
〈χ−〉2 +

c17

m
χ− 〈χ−〉+ c18

m
〈χ−χ−〉 , (2.28)

and
1

2m
γ0B†

(1)γ
0B(1)

=
1

2m

[
(v · ∇)2 −∇ · ∇ − i

◦
gA{S · ∇, v · u}

−
◦
g2

A

4
(v · u)2 +

1
2
εµνρσvρSσ

[
iuµuν + f+µν + 2v(s)

µν

]
−1

2
◦
gAe4[χ−, v · u] + 2e4iS

µ[∇µ, χ−] + 2e3iS
µ〈∂µχ−〉

+e2
3 〈χ−〉2 + e2

4χ−χ− + 2e3e4χ− 〈χ−〉
]

. (2.29)

The operator (v∇)2/2m in (2.29) is a special case of an
equation-of-motion type term. Up to O(p3) we have en-
countered the following equation-of-motion type terms [23]:

LEOM = N̄v

{
X (iv · ∇)3 + iv · ←−∇Y iv · ∇

+Ziv · ∇ − iv · ←−∇γ0Z†γ0
}

Nv . (2.30)

The operators Y = Y † and Z are purely mesonic operators
and are at most of the order O(p) and O(p2) respectively
and X is a real constant. Applying an adaptation of the
field redefinition given in [23]

Nv =
{

1− X

2
(iv · ∇)2 +

1
2

[
Y + ∆L(1)

]
iv · ∇

+
X

2

[
iv · ∇, ∆L(1)

]
−X

2

(
∆L(1)

)2
− Y

2
∆L(1) − γ0Z†γ0

}
N ′

v (2.31)

with

∆L(1) =
◦
gAS · u + e1 〈χ+〉+ e2

(
χ+ − 1

2
〈χ+〉

)

to the leading order lagrangian L̂(1)
πN eliminates all equation-

of-motion terms. It also induces a lagrangian at order
O(p2) which in our case with X = Z = 0 and Y = 1/(2m)
is explicitly given by

Lind = − 1
2m

N̄ ′
v

(
∆L(1)

)2
N ′

v . (2.32)

Naturally this field redefinition induces a lagrangian at
order O(p3) which must be dealt with in the construc-
tion of L̂(3)

πN . Adding all the pieces together the effective
lagrangian at order O(p2) is then given in its final form
by

L̂(2)
πN = N̄v

[
− 1

2m

(
∇ · ∇+ i

◦
gA{S · ∇, v · u}

)
+

f2

m
〈(v · u)2〉+ f3

m
〈u · u〉

+
1
m

εµνρσvρSσ

[
if4uµuν + f6f+µν + f7v

(s)
µν

]
+

f8

m
[χ−, v · u] +

f9

m
iSµ [∇µ, χ−]

+
f10

m
iSµ 〈∂µχ−〉 (2.33)

+
f11

m
S · u 〈χ+〉+ f12

m
Sµ 〈uµχ+〉

+
f13

m
〈χ+〉2 +

f14

m
χ+ 〈χ+〉+ f15

m

〈
χ+

2〉
+

f16

m
〈χ−〉2 +

f17

m
χ− 〈χ−〉+ f18

m

〈
χ−2〉]Nv .



512 R. Baur, J. Kambor: Generalized heavy baryon chiral perturbation theory

The coupling constants fi are related to those appearing
previously by

f2 =
c2

2
−

◦
g2

A

8
f3 =

c3

2
+

◦
g2

A

16

f4 = c4 +
1− ◦

g2
A

4
f6 = c6 +

1
4

f7 = c7 +
1
2

f8 = c8 − 1
4

◦
gAe4

f9 = c9 + e4 f10 = c10 + e3

f11 = c11 −
◦
gAe1 f12 = c12 −

◦
gAe2

2

f13 = c13 − e2
1

2
+

e1e2

2
+

e2
2

8
f14 = c14 − e1e2

f15 = c15 − e2
4

4
f16 = c16 +

e2
3

2
− e2

4

4

f17 = c17 + e3e4 +
e2
4

2
f18 = c18 +

e2
4

4
.

At orderO(p3) we restrict ourselves to operators which
contribute to either mass- and wave function renormaliza-
tion of the nucleon field Ψ or to the scalar sector of the
πN -system. This means that we set all chiral fields to
zero except for the scalar source χ+. The non relativistic
lagrangian L̂(3)

πN has the following contributions:

1. As stated before the generalized approach is also an
expansion in the parameter B. Therefore the relativis-
tic lagrangian at order O(p3) includes the two terms
of the form

B2 L(1)
πN + B L(2)

πN . (2.34)

In the non-relativistic limit their B-dependent contri-
butions have the same chiral structure as A(1) and
A(2), but have new coupling constants. These B-depen-
dent counterterms of O(p3) are needed to renormalize
divergences that arise from using the vertices of L̂(1)

πN
in the loop. They renormalize the coupling constants
of L̂(1)

πN by contributions of O(B2) and the constants of
L̂(2)

πN by an amount of O(B). As can bee seen from the
lowest order lagrangian, B enters only via the product
m̂B, thus there is no loop-divergence in proportion to
B2m̂. We can therefore omit all operators of the form
B2 L(1)

πN .
2. The relativist lagrangian L(3)

πN contains genuine new
operators that contribute in the non-relativistic limit
to A(3), see (2.24):

7∑
i=1

g̃iOi =
g̃1

m2 [∇µ, [∇µ, χ+]] +
g̃2

m2 〈∂ ·∂ χ+〉

+
g̃3

m2 χ+ 〈χ+χ+〉+ g̃4

m2 χ+ 〈χ+〉2

+
g̃5

m2 〈χ+〉3 +
g̃6

m2 〈χ+χ+〉 〈χ+〉 .

+
g̃7

m2 [χ+, [iv · ∇, χ+]] . (2.35)

Taking into account the terms in proportion to B we
find for A(3)

A(3) =
7∑

i=1

g̃iOi +
B

m2

[
c̃13 〈χ+〉2

+c̃14χ+ 〈χ+〉+ c̃15 〈χ+χ+〉
]

. (2.36)

3. The contributions from the 1/m expansion in (2.24).
The terms proportional to B(2), however, do not con-
tribute in our case.

4. The field redefinition as given in (2.31) with X =
Z = 0 and Y = 1/(2m) applied to L̂(1)

πN and to the
sum of the (2.28) and (2.29) induces a lagrangian at
O(p3), which must be taken into account. After this
transformation there are still equation-of-motion terms
at the O(p3) level. These can be removed by a sec-
ond transformation inducing additional terms to the
O(p3)-lagrangian. The appropriate choice of X, Y and
Z will be given below.

In a first step we collect all contributions from 1 . . . 3 and
from the field transformation (2.31). Splitting the O(p3)-
lagrangian into equation-of-motion terms and a remainder
we find:

L̂(3)
πN = L̂(3)

EOM + L̂(3)
rem (2.37)

with

L̂(3)
EOM =

1
16m2 N̄ ′

v

{
X̄ (iv · ∇)3 + iv · ←−∇ Ȳ iv · ∇

+Z̄iv · ∇ − iv · ←−∇γ0Z̄†γ0
}

N ′
v , (2.38)

where

X̄ = 1 ,

Ȳ =∆L(1) ,

Z̄ =
1
2

(
∆L(1)

)2
+ 4∆L(2) −

[
iv · −→∇ , ∆L(1)

]
,

(2.39)

and

L̂(3)
rem =

1
16m2 N̄ ′

v

{
16m2

7∑
i=1

g̃iOi (2.40)

+
1
2

[
∆L(1),

[
iv · ∇, ∆L(1)

]]
+

(
∆L(1)

)3

−4
{

∆L(1), ∆L(2)
}

+ 2
[
∇µ,

[
∇µ, ∆L(1)

]]
+4iεµνρσvρSσ

[←−∇µ

[
∇ν , ∆L(1)

]
−

[
∇ν , ∆L(1)

]
∇µ

]
+16B

[̃
c13 〈χ+〉2 + c̃14χ+ 〈χ+〉+ c̃15 〈χ+χ+〉

]}
N ′

v ,

where in our case ∆L(1) reduces to

∆L(1) = e1 〈χ+〉+ e2

(
χ+ − 1

2
〈χ+〉

)
, (2.41)
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and ∆L(2) is given by

∆L(2) = c13 〈χ+〉2 + c14χ+ 〈χ+〉+ c15
〈
χ+

2〉 . (2.42)

The terms in (2.39) and (2.40) receive contributions from
the transformation (2.31) when applied to L̂(1)

πN and to
the sum of the (2.28) and (2.29). The 1/m expansion con-
tributes as well.

In order to eliminate L̂(3)
EOM we employ (2.31) with

X =
1

16m2 X̄ , Y =
1

16m2 Ȳ and Z =
1

16m2 Z̄ .

The induced lagrangian is readily obtained:

Lind =
1

16m2 N̄ ′
v

[
−

(
∆L(1)

)3
− 1

2

[
∆L(1),

[
iv · ∇, ∆L(1)

]]
−4

{
∆L(1), ∆L(2)

}]
N ′

v . (2.43)

Adding everything together we find the lagrangian in the
scalar sector to O(p3)

L̂(3)
πN = N̄v

{
g1

m2 [∇µ, [∇µ, χ+]] +
g2

m2 〈∂ ·∂ χ+〉

+
g3

m2 χ+ 〈χ+χ+〉+ g4

m2 χ+ 〈χ+〉2

+
g5

m2 〈χ+〉3 +
g6

m2 〈χ+χ+〉 〈χ+〉

+
g7

m2 [χ+, [iv · ∇, χ+]] +
1

4m2 iεµνρσvρSσ

×
[
e1

(←−∇µ 〈∂νχ+ 〉 − 〈∂νχ+ 〉∇µ

)
+e2

(←−∇µ

[
∇ν , χ+ − 1

2
〈χ+〉

]
−

[
∇ν , χ+ − 1

2
〈χ+〉

]
∇µ

]
+

B

m2

[
c̃13 〈χ+〉2

+c̃14χ+ 〈χ+〉+ c̃15 〈χ+χ+〉
]}

Nv . (2.44)

In (2.44) we have subsumed all operators of the form given
in (2.35) into the coupling constants gi. They differ from
g̃i by a finite renormalization.

3 Mass– and wavefunction renormalization

The formalism presented in Sect. 2 enables us to calcu-
late the T-matrix element of any process with one incom-
ing and one outgoing nucleon in Generalized HBChPT to
order p3. However, as shown by Ecker and Mojžǐs, the
sources of the heavy component of the nucleon field in
the generating functional cannot be dropped altogether.
[17] Rather, these terms contribute to the wavefunction
renormalization in a non-trivial manner. In order to pro-
vide this link between the T-matrix elements calculated

π

a) N b)

c)
Fig. 1. Feynman diagrams contributing to the self-energy of
the nucleon to O(p3). Plain and dashed lines denote the nu-
cleon and the pion, respectively. The shaded box denotes the
counterterm insertions of order p2 and p3

in GHBChPT and the relativistic S-matrix elements one
is actually seeking, we discuss mass– and wavefunction
renormalization to order p3. The formalism of [17] can be
carried over directly to our case and need not to be re-
peated here. However, we indicate those steps where Gen-
eralized ChPT gives raise to new features not present in
the standard formulation. In the following we work in the
isospin limit.

3.1 The nucleon propagator in generalized ChPT

The central object to be considered is the nucleon propa-
gator (c.f. [17] for definitions)

SN (p) = P+
v S++P+

v + P+
v S+−P−

v

+P−
v S−+P+

v + P−
v S−−P−

v (3.1)

where the off–shell momentum p is decomposed according
to

p = mv + k (3.2)

with k a residual small momentum. For the present ap-
plication, we need the pole-part of the objects Sij , i, j ∈
{+,−}.

S++ in (3.1) is determined by the selfenergy calculated
in GHBChPT

S++(k)−1 = −Σ(k) . (3.3)

The diagrams which contribute are shown in Fig. 1. Dia-
gram a) is a typical new feature of the generalized frame-
work — in standard HBChPT these diagrams enter first
at order p4. Diagram b) is formally the same as in the
standard case, but there are nevertheless some differences.
First, the propagator in GHBChPT is modified to

SGHBChPT =
i

v · k − σ0
, σ0 ≡ −4e1m̂ . (3.4)

We will later see that the shift σ0 in the propagator gives
raise to higher order contributions only and has no net
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effect at order p3. Second, the pion mass entering via the
pion propagator is given by the leading order expression
in (2.7). Here and below, the symbol M2

π is always under-
stood to be defined by that equation. Finally, the contact
terms of diagram c) can be read off from (2.33) and (2.44).
Explicitly, the selfenergy is found to be

Σ(k) = Σloop(v · k − σ0) + Σcontact (3.5)

with

Σloop(ω) = Σ(a) + Σ(b)(ω) (3.6)

and

Σ(a) = −3
2

σ0

F 2

1
i
∆(M2

π) (3.7)

Σ(b)(ω) =
3
4

g2
A

F 2

(
−ω

1
i
∆(M2

π) +
[
M2

π − ω2]J0(ω)
)

. (3.8)

The functions 1
i ∆ and J0 are standard one-loop integrals

given in Appendix B. The contact contributions of Fig. 1c
have the simple form

Σcontact = − k2

2m
+ Σ

(2)
CT + Σ

(3)
CT (3.9)

where

Σ
(2)
CT = −8m̂2

m
(2f13 + f14 + f15)

Σ
(3)
CT = −16m̂3

m2 (g3 + 2g4 + 4g5 + 2g6)

−8m̂2B

m2 (2c̃13 + c̃14 + c̃15) . (3.10)

The loop contributions to the selfenergy contain diver-
gences which, for physical quantities, can always be ab-
sorbed by a appropriate renormalization of the the coun-
terterms gi and c̃i in Σ

(3)
CT. This is discussed in Sect. 3.2

below.
The pole-part of S+−, S−+ and S−− is proportional

to S++. To the order we are working we have

S+−(k) =
1

2m
P+

v S++

(
1− v · k + σ0

2m
+O(p3)

)
6k⊥P−

v

S−+(k) =
1

2m
P−

v S++

(
1− v · k + σ0

2m
+O(p3)

)
6k⊥P+

v

S−−(k) =
1

(2m)2
P−

v 6k⊥S++ 6k⊥P−
v +O(p3) . (3.11)

Due to the presence of the projection operators P−
v the

term in proportion to S−− is suppressed by one additional
power of p and does not contribute at the order we are
considering here.

Following again [17] we now define the on-shell nucleon
momentum pN as

p = mv + k ≡ pN + λr

pN ≡ mNv + Q . (3.12)

The arbitrary four-vector r controls the on-shell limit p→
pN by letting the real parameter λ tend to zero. We can
choose r = v for convenience. The nucleon mass has the
expansion

mN = m + σ0 + δm(2) . (3.13)

Here we have displayed explicitly the leading order cor-
rection σ0. As emphasized previously we count σ0 as a
quantity of order p. The remainder, δm(2), is of O(p2) by
definition. Then we have

p2
N = m2

N =⇒ 2mNv ·Q + Q2 = 0 (3.14)

and

v · k = σ0 + δm(2) − Q2

2m
+ λ . (3.15)

We observe that on-shell (λ→ 0)

v · k − σ0 = O(p2) , (3.16)

which will be crucial for the analysis to follow3.

3.2 The nucleon mass to O(p3)

The pole of the nucleon propagator is entirely determined
by S++. On-shell, and to O(p3), we have

S
(−1)
++ (k) = v · k − σ0 −Σ(k) (3.17)

=
1

2m

(
p2 −m2 − 2m

[
σ0 + Σ

(2)
CT

+ Σ
(3)
CT + Σloop(v · k − σ0)

])
Expanding Σloop according to

Σloop(v · k − σ0)
= Σloop(0) + (v · k − σ0)Σ′

loop(0) + . . . (3.18)

we observe that due to (3.16) only the leading term in this
expansion has to be kept. Thus

m2
N = m2 + 2m

[
σ0 + Σ

(2)
CT + Σ

(3)
CT + Σloop(0)

]
. (3.19)

The next step consists of removing the divergences in
Σloop(0) by renormalization of the counter term coupling
constants. Employing (3.6) the divergent part of the one-
loop selfenergy can be written as

Σloop(0)| div =
24e1

F 2

(
Bm̂2 + 2Am̂3) · Λ(µ) (3.20)

3 The propagator in GHBChPT depends also only on the
combination v · k− σ0. When doing loop calculations, this can
be used to show that, to leading order, the shift σ0 in the
propagator has no net effect. This result could be obtained al-
ternatively by choosing a shifted mass m→ m + σ0 in the ex-
ponential factor occurring in the definition of the heavy baryon
field, c.f. (2.16). However, we prefer to keep the mass correction
σ0 explicit, since it depends on the light quark mass
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where Λ(µ) contains the pole for d → 4 and is defined in
Appendix B. Defining renormalized couplings

gi = gr
i (µ) +

m2

F 2 βgi
· Λ(µ)

c̃i = c̃r
i (µ) +

m2

F 2 βc̃i
· Λ(µ) (3.21)

the nucleon mass in (3.19) is rendered finite for

2βc̃13 + βc̃14 + βc̃15 − 3e1 = 0
βg3 + 2βg4 + 4βg5 + 2βg6 − 3e1A = 0 . (3.22)

The constants fi need not to be renormalized.
Finally we solve (3.19) for mN . Neglecting consistently

higher order terms we find

mN = m + ∆m(1) + ∆m(2) + ∆m(3) +O(p4) (3.23)

with

∆m(1) = σ0

∆m(2) = −8m̂2 (2f13 + f14 + f15) + 1
2σ2

0

mN

∆m(3) = −16m̂3

m2
N

(gr
3 + 2gr

4 + 4gr
5 + 2gr

6)

−8m̂2B

m2
N

(2c̃r
13 + c̃r

14 + c̃r
15)

− 3σ0M
2
π

32π2F 2
π

ln
M2

π

µ2 −
3

◦
g2

A

32πF 2
π

M3
π . (3.24)

We have expressed everything in terms of the physical nu-
cleon mass mN . In standard HBChPT only σ0 and the
term in proportion to M3

π enter at O(p3). The additional
terms in proportion to fi, gi and c̃r

i are not known and pre-
vent us from giving a quantitative estimate of the nucleon
mass shift4. However, the formula can be used in further
applications of GHBChPT and we hope that the unknown
constants can be determined in such future work.

3.3 Wavefunction renormalization to O(p3)

The wavefunction renormalization constant ZN is defined
via

ZN (Q)u(pN ) = lim
p→pN

SN (p)(6p−mN )u(pN )

= lim
λ→0

SN (p)λ 6vu(pN ) . (3.25)

Employing (3.15,3.16) and keeping terms linear in λ only
we may expand

Σloop(v · k − σ0) = Σloop(0) + λΣ′
loop(0) +O(λ2, p4) .

(3.26)

4 Only the combinations fi + B
mN

c̃r
i , i = 13, 14, 15 enter the

expression and can possibly be fixed from experiment

Thus

ZN (Q)u(pN ) =
m

(
P+

v + 1
2m 6k⊥ [

1− v·k+σ0
2m

]) 6vu(pN )
v · pN −mΣ′

loop(0)
.

(3.27)

The same steps as performed in [17] but keeping track of
the peculiarities due to GHBChPT lead to the final result

ZN (Q) = 1− 1
mN

(
σ0 + ∆m(2)

)
+

Q2

4m2
N

+ Σ′
loop(0)

(3.28)

where

Σ′
loop(0) = −9

2

◦
g2

AM2
π

16π2F 2
π

(
16π2Λ(µ) + ln

Mπ

µ
+

1
3

)
.

(3.29)

This result is identical to the result obtained in standard
HBChPT except for the appearance of the term in pro-
portion to ∆m(2). The fact that the wavefunction renor-
malization “constant” depends on the momentum Q is not
affected. As before we have expressed all contributions in
terms of the physical nucleon mass.

4 The scalar form factor of the nucleon

As a further application of our formalism we consider the
scalar form factor of the nucleon〈

Ψ(p′)|m̂ (
ūu + d̄d

) |Ψ(p)
〉

= σ(t)ū(p′)u(p) , (4.1)

which is a measure of explicit chiral symmetry breaking
due to up and down quark mass. The variable t = (p′−p)2
denotes the square of the four-momentum transfer. At
t = 0 the scalar form factor yields the so called sigma
term of the nucleon, which has attracted much atten-
tion over the years. The interest in this quantity derived
partly from the discrepancy between early determinations
of σ(0) from πN -scattering data and naive estimates based
on the analysis of the baryon mass spectrum. Gasser,
Leutwyler and Sainio have resolved the issue by a thor-
ough dispersive analysis of the nucleon sigma term. [24]
The method relies on three steps: i) a low energy theorem
due to Brown, Pardee and Peccei [25] relates the isospin
even πN -scattering amplitude (with Born term removed)
at the Cheng-Dashen point, D̄+(2M2

π), to the scalar form
factor of the nucleon, i.e.

Σ ≡ F 2
πD̄+(2M2

π) = σ(2M2
π) + ∆R . (4.2)

The remainder ∆R is ofO(m̂2) and was recently calculated
to order p4 in standard HBChPT. [26] It was shown that
potentially large contributions due to chiral logarithms of
the form M4

π lnMπ cancel exactly; ∆R is indeed small and
was estimated to be bounded by 2 MeV. ii) Σ is deter-
mined by the extrapolation of the πN scattering ampli-
tude from the physical region t ≤ 0 to the Cheng-Dashen
point. It is useful to decompose

Σ = Σd + ∆D , (4.3)
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where Σd denotes the first two terms in a Taylor series ex-
pansion. The point is that Σd is fixed in terms of the πN
scattering amplitude in the physical region. The remain-
der, ∆D, is also accessible through a dispersive analysis
but depends on the ππ phase shift. It is particularly sen-
sitive to the region just above the two pion threshold. Nu-
merically, the analysis in [27] yielded Σd = 48 MeV, with
an error bar of about 8 MeV, and ∆D = 11.9± 0.6 MeV.
We refer to [24,27,28] for a detailed account on this part.
iii) In order to determine the nucleon sigma term from
(4.2), it remains to calculate the shift of the scalar form
factor from the Cheng-Dashen point to zero momentum
transfer,

∆σ = σ(2M2
π)− σ(0) . (4.4)

In [27] ∆σ was calculated by means of a once subtracted
dispersion relation for σ(t), yielding

∆σ = 15.2± 0.4 MeV . (4.5)

It was noted that ∆σ cannot be reliably calculated in chi-
ral perturbation theory, say to one-loop. The reason is
that the imaginary part entering the dispersion relation
is in proportion to Γπ(t) =

〈
π0(p′)|m̂(ūu + d̄d|π0(p)

〉
, the

scalar form factor of the pion, and to f0
+, the I=J=0 πN

partial wave in the t-channel. However, both are grossly
underestimated in the two-pion threshold region if leading
order ChPT calculations are employed.

If the quark condensate is substantially smaller than
assumed in standard ChPT, all of the three steps men-
tioned above are subject to modifications and must be
reanalyzed. In step ii) and iii), the ππ phase shift close
to threshold plays an important role. Moreover, the nor-
malization of the pion scalar form factor, which enters the
determination of ∆σ, is also sensitive to the light quark
condensate5. This can be seen best by using the Feynman-
Hellman theorem for Γπ(0), i.e.

Γπ(0) = m̂
∂M2

π

∂m̂
= 2Bm̂ + 8Am̂2 ≡M2

π(2− x) , (4.6)

with

x ≡ xGOR =
2Bm̂

M2
π

, 0 ≤ x ≤ 1 . (4.7)

The parameter x interpolates between the extreme gen-
eralized limit, x = 0, and the standard case with x = 1.
Note that x is given in terms of B, a quantity of chiral
SU(2). The relation between x and the more familiar ratio
r = ms/m̂ is given in [29]. For r . 12 the normalization of
the pion scalar form factor starts to deviate strongly from
the standard case. We will come back to a dispersive treat-
ment of σ(t) in Sect. 4.2 but now turn to the GHBChPT
calculation.

4.1 Scalar form factor of the nucleon
to O(p3) in GHBChPT

Although it is clear from the above that ChPT itself can-
not provide a full understanding of the nucleon sigma

5 We are grateful to Jan Stern for pointing this out to us

χ

N
a)

π

b) c)

d) e)
Fig. 2. Feynman diagrams contributing to the scalar form
factor of the nucleon to O(p3). Plain, dashed, and double lines
line denote the nucleon, the pion, and the scalar source, re-
spectively. The shaded box denotes tree contributions of order
p, p2, and p3

term, ChPT is nevertheless needed in order to provide im-
portant constraints on the dispersive analysis. The method
of calculating fully relativistic quantities like the scalar
form factor in (4.1) by using HBChPT has been spelled
out in [17]. We follow this method and also employ the ini-
tial nucleon rest frame (INRF) when applying wave func-
tion renormalization. The fully renormalized scalar form
factor thus calculated in HBChPT coincides with the rela-
tivistic form factor we are seeking. The Feynman diagrams
contributing to order p3 GHBChPT are shown in Fig. 2.
Compared to the standard case there are three additional
loop diagrams, i.e. graphs b), c) and e). In dimensional
regularization the sum of all loop graphs is found to be

σ(t)loop = −3
2
σ0

∆(M2
π)

F 2 +
3

◦
g2

Aσ0

4F 2

[
∆(M2

π)−M2
πJ

′
0(0)

]
+

3
2

(2− x)σ0
M2

π

F 2 Jππ(t)− 3
8

(2− x)
◦
g2

AM2
π

F 2

× [(
t− 2M2

π

)
K0(0, t)− 2J0(0)

]
, (4.8)

where σ0 is the lowest order contribution to σ(t)

σ0 = −4m̂e1 . (4.9)

The loop functions ∆, J
′
0, Jππ, K0, and J0 are given in

Appendix B.
The tree-contributions in Fig. 2a are modified as well.

Besides the O(p) contribution, which in the standard case
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was counted as O(p2), there are genuine new vertices of
the order p2 and p3. These can be read off easily from the
corresponding effective lagrangians given in Sect. 2. We
find

σtree(t) (4.10)

= σ0 − 16m̂2

m

[
2f13 + f14 + f15 +

B

m
(2c̃13 + c̃14 + c̃15)

]
−48m̂3

m2 (g3 + 2g4 + 4g5 + 2g6) +
m̂t

m2 (g1 + 2g2) .

Finally we must take into account wave-function renor-
malization of the in- and outgoing fields Nv and N̄v, re-
spectively,

σ(t) = (σtree(t) + σloop(t))
√

ZN (0)ZN (Q) . (4.11)

As mentioned above, we work in the INRF where incoming
and outgoing nucleon four momentum are given as

pin = mNv, pout = mNv + Q , Q = p− p′ . (4.12)

For the following it is convenient to decompose the
scalar form factor according to

σ(t) ≡ σ(0) + σ̄(t) (4.13)

and to discuss the two pieces separately. The contributions
to σ(0) of the loop-graphs as well as those from wavefunc-
tion renormalization contain divergences for d→ 4. These
are removed by introducing renormalized coupling con-
stants gr

i and c̃R
i as given in (3.21,3.22). Using the explicit

form of the loop functions at zero momentum transfer and
expanding consistently up to O(p3), we arrive at the final
result for the nucleon sigma term

σ(0) = σ0 +
(

2− σ0

mN

)
∆m(2)

−16m̂2B

m2
N

(2c̃r
13 + c̃r

14 + c̃r
15)

−48m̂3

m2
N

(gr
3 + 2gr

4 + 4gr
5 + 2gr

6)

− 3σ0M
2
π

32π2F 2
π

[
(3− x) ln

M2
π

µ2 + (2− x)
]

− 9
◦
g2

A

64πF 2
π

(2− x)M3
π , (4.14)

where ∆m(2) was given in (3.24). This result agrees with
the Feynman-Hellman theorem

σ(0) = m̂
∂

∂m̂
mN (4.15)

and therefore provides a nice check on our calculation.
The t–dependent part of the scalar form factor involves

only finite loop functions and needs no infinite renormal-
ization of counterterms. We thus obtain the scale indepen-
dent result

σ̄(t) =
σ0 + 8m̂(g1 + 2g2)

8m2
N

· t +
3σ0M

2
π

2F 2
π

(2− x)J̄ππ(t)

−3
◦
g2

AM2
π

8F 2
π

(2− x)
[
(t− 2M2

π)K0(0, t)− Mπ

8π

]
.(4.16)

The loop contributions scale with (2 − x), i.e. there is a
factor of two difference between the extreme generalized
(x = 0) and standard case (x = 1). The polynomial part
linear in t on the other hand does not exhibit this scale
factor. The combination of coupling constants g1 + 2g2 is
unknown; in standard ChPT these terms would occur at
order p4.

The phenomenological implications of these results can
be assessed only in comparison with the dispersive analysis
as described in [24,27] for the standard case and outlined
at the beginning of this section. As to σ(0), we do not
know the coupling constants e1, c̃r

i , and gr
i . On dimen-

sional grounds, we expect these constants to be of order
unity. The leading order term, σ0, can be estimated as
follows. The counter term contributions of O(p2) are sup-
pressed by additional factors m̂/mN and therefore must be
small. The loop contributions, i.e. the last line in (4.14),
depend explicitly on the ratio x. The term in proportion
to

◦
g2

A is dominating and numerically yields −(2 − x)22.5
MeV. Once the sigma term is determined from a dispersive
analysis, we then have

σ0 ≈ σ(0)dispersive + (2− x) 22.5 MeV. (4.17)

Note that the result of the dispersive analysis will also
depend on x. Incidentally, this variation with x partially
cancels the x-dependence of the second term in (4.17),
leading to σ0 ≈ 67.5 . . . 80 MeV, where the lower and up-
per bound correspond to x = 1 and x = 0, respectively.
[30]

The phenomenological analysis of the t-dependent part
is also instructive. Consider the shift between Cheng-
Dashen point and zero momentum transfer to O(p3)

∆σ =
2M3

π

m2
N

[
m̂

Mπ
(gr

1 + 2gr
2) +

σ0

8Mπ

]
(4.18)

+ (2− x)
2M3

π

(4πF )2
3π

8

[
◦
g2

A +
σ0

Mπ

(
4
π
− 1

)]
.

The second term in the first square bracket is due to wave-
function renormalization. The standard result to order
O(p3) is obtained by setting x = 1 and by the obser-
vation that in this case all terms in proportion to σ0 and
the couplings gr

i are at least of O(p4). Setting
◦
gA = 1.26,

Fπ = 92.4 MeV, mN = 939 MeV we obtain

∆σ =
{

6
[

m̂

Mπ
(gr

1 + 2gr
2) +

σ0

8Mπ

]
+(2− x)

[
7.5 + 1.6

σ0

Mπ

]}
MeV . (4.19)

In order to get a rough estimate of the size of the
contribution not in proportion to (2 − x) we set σ0 = 70
MeV and employ a typical value for the light quark mass in
generalized ChPT, m̂ = 20 MeV. On dimensional analysis
grounds one expects the coupling constants gr

1 and gr
2 to

be of order unity. Varying the sum gr
1 + 2gr

2 between the
bounds ±3 yields a net contribution of about ±3 MeV to
∆σ. The second term in (4.19) is due to finite loop graphs.
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Fig. 3. The imaginary part of the scalar form factor. Full, dot-
ted and dashed-dotted lines denote the dispersive analysis in
the standard case, the dispersive analysis in the extreme gener-
alized case and the O(p3) GHBChPT calculation, respectively

Numerically, the term in proportion to
◦
g2

A is the dominant
contribution for reasonable values of σ0, i.e. σ0 = 60 . . . 80
MeV. Due to the scale factor (2 − x) the shift ∆σ yields
contributions which can be larger than the standard ChPT
result to O(p3) by more than a factor of 2.

How does this result compare to a dispersive analysis
adopted to the case of a small quark condensate? While
a full treatment is outside the scope of this article, we
sketch in Sect. 4.2 below a dispersive treatment of σ̄(t).
Details are deferred to a forthcoming publication. [30] In
Fig. 3 we compare the imaginary part of σ(t) of the dis-
persive analysis with the result of the O(p3) GHBChPT
calculation. The dispersive result is seen to yield a strong
enhancement over the ChPT calculation, as pointed out in
[27]. The figure clearly shows that a leading order ChPT
calculation is not appropriate to calculate the imaginary
part reliably, both in the standard as well as in the gen-
eralized case. Note that the universal factor (2 − x) has
been divided out. The comparison also shows that the fail-
ure of the GHBChPT calculation for ∆σ (compare Table
1) cannot be blamed on the dimensional estimate for the
coupling constant gr

1 + 2gr
2. We know that higher order

corrections in the chiral expansion will modify the imag-
inary part substantially. Neglecting these and adjusting
gr
1 + 2gr

2 such that the dispersive value for ∆σ is repro-
duced is therefore without justification.

4.2 Dispersive analysis of ¯σ(t)

We present a dispersive analysis of σ̄(t) adopted to the
case of a small quark condensate. The model serves as
a representation to which the ChPT calculation can be

Table 1. r-dependence of ∆σ and dσ(0)
dt

normalized to the
standard case

α 1 2 2.5 3 3.5 4

r = ms
m̂

≈ 25 12 10.25 9.2 8.5 ≈ 8
2− x 1 1.40 1.58 1.75 1.93 2.00

∆gen
σ /∆stan

σ 1 1.38 1.55 1.71 1.87 1.93
dσgen(0)

dt
/ dσstan(0)

dt
1 1.37 1.53 1.68 1.84 1.89

compared, but also provides a first step towards the cal-
culation of the nucleon sigma term. We employ the once
subtracted dispersion relation

σ̄(t) =
t

π

∫
dt′

Im σ(t′)
t′(t′ − t− iε)

(4.20)

and use the imaginary part as given in the elastic region
4M2

π < t < 16M2
π via

Im σ(t) =
3
2

Γ ∗
π (t)f0

+(t)
4m2

N − t

(
1− 4M2

π

t

) 1
2

. (4.21)

Here, Γπ(t) is the scalar form factor of the pion and f0
+(t)

is the I=J=0 πN partial wave in the t-channel. Both of
these amplitudes are subject to strong final state interac-
tions of the two pions. In order to account for these effects,
we model the imaginary part as follows. For the pion form
factor, we use the form

Γπ(t) = Γπ(0)(1 + b · t) exp{∆0(t)} , (4.22)

where

∆0(t) =
t

π

∫ t1

4M2
π

dt′
δ0
0(t′)

t′(t′ − t− iε)
(4.23)

is referred to as the Omnès function and δ0
0 denotes the

I=J=0 ππ phase shift. For definiteness, the cutoff in (4.23)
is taken as t1 = (0.9 GeV)2.

The generalized scenario of SBχS enters (4.22) in two
ways. First, the normalization Γπ(0) is sensitive to the
quark condensate, and to leading order it is given by (4.6).
Higher order corrections are expected to be small and
we employ the simple form (4.6) in our dispersive anal-
ysis. Second, the I=J=0 ππ phase shift differs consid-
erably from the standard case, in the threshold region.
Consequently, the Omnès function is modified, leading to
a further enhancement of the pion form factor close to
threshold. The polynomial (1 + b · t) in (4.22) is used
to mimic the effect of a two-channel analysis which, in
the standard case, was seen to modify the pion form fac-
tor substantially above t = (0.45 GeV)2. [31]. We expect
these effects to a large extent to be independent of the ππ
phase shift at threshold and fix the parameter universally
at b = 0.038 fm2.

As to f0
+ we employ the strategy developed in [27,

32] in order to extrapolate to the unphysical region. For
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t ≤ 0 we use the data tabulated in [33]. The continuation
depends on the ππ phase shift employed – here enters the
assumption made about the quark condensate. We use a
parameterization of δ0

0 given by Schenk [34] with threshold
parameters a0

0, b0
0 taken from [29]. Details of this analysis

will be presented elsewhere [30].
The model specified by (4.20-4.23) and the continua-

tion of f0
+ just described is then used to calculate σ̄(t)

for 0 < x < 1. In Fig. 3 the imaginary parts of σ(t) for
the two limiting cases are compared. The threshold en-
hancement of the curve corresponding to the dispersive
treatment of the extreme generalized case (x = 0) over
that of the standard case (x = 1) is due to the larger
scattering length of the former. The area under the two
dispersive curves in Fig. 3 is roughly equal, however. The
ratio ∆generalized

σ (x)/∆standard
σ is thus close to (2 − x). In

Table 1 we give this ratio as well dσ(0)/dt normalized
to the standard case for various values of x. α is related
to the ππ scattering amplitude at the symmetric point
s = t = u. [8] For the sake of comparison we also give the
corresponding values of r, taken from [29], and 2−x. The
shift of scalar form factor of the nucleon deviates from the
standard case substantially for r . 12.

We close the discussion with a remark concerning the
dispersive analysis of the nucleon sigma term itself. As
mentioned at the beginning of this section, σ(0) can be ob-
tained by updating the estimates for ∆R and ∆D, adopted
to the case of a small quark condensate. ∆D is particularly
sensitive to the threshold behaviour of the ππ phase shift.
The crucial question here is whether the almost perfect
cancellation between the remainders ∆D and ∆σ observed
in [24] persist in the case of a small quark condensate.
Work in this direction is under way and results will be
reported in [30].

5 Conclusions

The consequences of a small quark condensate are studied
for the baryonic sector of ChPT. To this end, we have con-
structed an effective theory of the πN–system respecting
chiral symmetry and admitting a systematic expansion in
small momenta, the light quark masses, and the dimen-
sionful parameter B = −〈q̄q〉 /F 2, collectively denoted as
p (GHBChPT). The light quark masses are counted as or-
der p, in contrast to the standard counting rule mq ∼ p2.
Moreover, we assume that in the chiral limit the theory
contains no other small scales than B. The effective la-
grangian is given in it’s most general form to O(p2) and
to O(p3) in the scalar sector. A method to efficiently con-
struct the relativistic baryonic chiral lagrangians for chiral
SU(2) to all orders is given in the Appendix.

Mass- and wavefunction renormalization have been cal-
culated to O(p3). These results will be useful for future
applications of the formalism laid out in this article. We
have, then, considered the scalar form factor of the nu-
cleon to order p3. The result depends on additional low
energy coupling constants not present in the standard case
at this order. By comparison to a dispersive treatment of
the subtracted nucleon scalar form factor adopted to the

generalized scenario of SBχS, it is shown that the chiral
prediction for the shift ∆σ = σ(2M2

π)− σ(0) is unreliable
also in generalized ChPT. Moreover, the dispersive analy-
sis yields a strong deviation of ∆σ from the standard result
provided r = ms/m̂ . 12, which can reach up to a factor
of two for the limiting case of a vanishing quark conden-
sate. In order to determine the nucleon sigma term, both
the remainder at the Cheng-Dashen point, ∆R, as well as
the remainder in the extrapolation of the πN scattering
amplitude from the physical region to the Cheng-Dashen
point, ∆D, have to be reanalyzed without the assumption
of a large quark condensate.

Other processes like πN -scattering or πN → Nππ are
expected to be sensitive to the value of the light quark con-
densate too. We hope that future studies in the framework
presented here will lead to a determination of many of the
unknown coupling constants. This, together with disper-
sive theoretic methods, should ultimately make it possible
to test the standard scenario of spontaneous breakdown
of chiral symmetry in the baryonic sector as well.

Acknowledgements. We would like to thank M. Knecht for cor-
respondence and J. Stern for discussion initiating our work on
the dispersive treatment of the nucleon scalar form factor. This
work was supported in part by Schweizerischer Nationalfonds.

A Construction
of a SU(2) invariant Lagrangian

In the following we will give a recipe of how to efficiently
construct the relativistic baryon-meson Lagrangian LπN .
We demand that LπN be hermitian, flavor neutral, invari-
ant under SU(2) chiral transformations, proper Lorentz
transformations, and the discrete symmetries6 C,P, and
T. The method follows closely that used by Krause for
the case of chiral SU(3) [35]. There are some differences,
however, which are due to the fact that in chiral SU(2) the
Baryons belong to the fundamental representation. Also,
we feel an explicit exposition of the rules employed will
be helpful for future work in HBCHPT, both in the stan-
dard as well as in the generalized version. An alternative
derivation has appeared recently in [36].

The construction of the effective Lagrangian is built
upon the traceless chiral fields

uµ, fµν
± , χ± − 1

2
〈χ±〉 , (A.1)

and the singlet chiral fields

〈χ±〉 , v(s)
µν . (A.2)

All of these are 2× 2 matrices in flavor space. In order to
keep the following exposition and expressions as simple as
possible, we slightly change our notation of the covariant

6 The transformation properties of the chiral fields and of
the elements of the Clifford Algebra are listed in Table 2 and
Table 3 respectively
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derivative. In the previous sections a covariant derivative
acted on all fields to the right of it. Now it is understood
that a derivate acts only on the field right next to it, i.e.

∇µX = ∂µX + [Γµ, X] . (A.3)

The covariant derivative on the nucleon field Ψ is given by

∇µΨ = ∂µΨ +
(
Γµ − iv(s)

µ

)
Ψ . (A.4)

The chiral order of the fields are:

χ±, χ± − 1
2
〈χ±〉 , uµ ∼ O(p) , fµν

± , v(s)
µν ∼ O(p2) .

(A.5)

A covariant derivative acting on these fields increases the
chiral order by one. The covariant derivative on the nu-
cleon field Ψ counts as

∇µΨ ∼ O(1) . (A.6)

In what follows we will construct the most general op-
erator which can occur in LπN . In a first step we restrict
ourselves to terms in LπN without derivatives acting on
the nucleon fields Ψ or Ψ̄ . In this case such a term is gener-
ically of the form

Ψ̄ΓAΨ , Γ ∈ Clifford Algebra . (A.7)

The term A is a polynomial in the chiral fields of (A.1),
(A.2), and covariant derivatives thereof. To ensure Lorentz
invariance all Lorentz indices must be contracted with a
suitable combination of the metric gµν or the completely
antisymmetric tensor εµνρσ. Instead of writing the polyno-
mial A as a simple product of chiral fields it is more suit-
able to consider the general polynomial A in the somewhat
more complex form

A = (A1, (A2, · · ·An) . . . ) (A.8)

where (A1, A2) denotes either the commutator [A1, A2] or
the anticommutator {A1, A2} of the chiral fields A1 and
A2. The polynomial A can then be simplified with the
observation that

[D, [C, B]] = {B, {C, D}} − {C, {B, D}} , (A.9)

and the fact that the anticommutator of two traceless
fields B, C ∈ SU(2) can be written as a trace in flavor
space

{B, C} = 〈BC〉 . (A.10)

Starting with the innermost (anti-) commutator (An−1,
An) it is easy to see that the general polynomial A with
n non singlet chiral fields decomposes to a linear combi-
nation of polynomials Ā of the form

Ā =


1dOn

A1On−1

[Ai1 , Ai2 ] On−2

(A.11)

where On stands for a generic product of three types of
flavor traces

On = 〈A1 [A2, A3]〉 . . . 〈Aj−2 [Aj−1, Aj ]〉
× 〈Aj+1Aj+2〉 . . . 〈An−1An〉
× S1 S2 . . . Sn′

(A.12)

The operator Ai (Si) stands for a non-singlet (singlet) chi-
ral field and covariant derivatives thereof. For their defi-
nitions see (A.1) and (A.2).
Under charge conjugation such a polynomial transforms
in a definite way

Āc = (−1)cĀĀT , (A.13)

where

cĀ = c1 + · · ·+ cn + nv + n[ ] ,

n[ ] = number of commutators in Ā ,

n = number of non-singlet fields in Ā ,

nv = number of v
(s)
µν in Ā ,

(A.14)

and ck is the c-parity of the k’th chiral field Ak

Ac
k = (−1)ckAT

k , (see Table 2) . (A.15)

This relation is valid because under charge conjugation
the (anti-)commutator (A1, A2) transforms as

(A1, A2)∓ = ∓(−1)c1+c2(A1, A2)∓ . (A.16)

In a similar fashion the hermiticity property of A can be
analyzed

Ā† = (−1)hĀĀ ,

hĀ =h1 + · · ·+ hn + nχ− + n[ ] , (A.17)

nχ− = number of 〈χ−〉 in Ā ,

where hk is given by

A†
k = (−1)hkAk , (see Table 2) . (A.18)

The parity of Ā is

ĀP = (−1)pĀĀ

pĀ = p1 + . . . + pn + nχ− + nε ,

nε = number of εµνσρ in Ā .

(A.19)

Here, pk is the parity of the k’th chiral field Ak

AP
k = (−1)pkĀ (see Table 2) . (A.20)

It is understood that under parity lower Lorentz indices
in Ak are contracted with the metric gµν and vice versa.

The most general term that can occur in LπN without
derivatives on the nucleon fields is then given by

Ψ̄ iεĀΨ , ε = 0, 1 . (A.21)
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The additional factor i is needed in the case when Ā is
anti-hermitian. We are now in the position to derive the
useful relations:(

Ψ̄Γ iεĀΨ
)c = (−1)cĀ+cΓ Ψ̄Γ iεĀΨ (A.22)(

Ψ̄Γ iεĀΨ
)† = (−1)hĀ+hΓ +ε Ψ̄Γ iεĀΨ , (A.23)(

Ψ̄Γ iεĀΨ
)P = (−1)pĀ+pΓ Ψ̄Γ iεĀΨ (A.24)

with (see Table 3)(
Ψ̄ΓΨ

)P = (−1)pΓ Ψ̄ΓΨ , C−1ΓC = (−1)cΓ ΓT ,

γ0Γ
†γ0 = (−1)hΓ Γ . (A.25)

Thus an operator is permissible only if

(−1)pĀ+pΓ = (−1)cĀ+cΓ = (−1)hĀ+hΓ +ε = 1 . (A.26)

In a next step we will allow for covariant derivatives
acting also on the nucleon fields Ψ and Ψ̄ . Since the com-
mutator between covariant derivatives can be written as

[∇µ,∇ν ] =
1
4

[uµ, uν ]− i

2
f+

µν − ivs
µν (A.27)

any string of derivatives i∇µ1 . . . i∇µn acting on Ψ can be
cast into the form

i∇µ1 . . . i∇µnΨ → {
i∇µ1 , {i∇µ2 , . . . i∇µn}

}
Ψ , (A.28)

up to terms with less than n derivatives acting on Ψ . The
operators −→Dn

µ1...µn
and ←−Dn

µ1...µn
are defined as

−→
Dn

µ1...µn
= {i∇µ1 , {i∇µ2 , . . . i∇µn

}} , (A.29)
←−
Dn

µ1...µn
= {i←−∇µ1 , {i←−∇µ2 , . . . i

←−∇µn
}} , (A.30)

where ←−∇µ is given by

←−∇µ =←−∂µ −
(
Γµ − iv(s)

µ

)
. (A.31)

Under charge conjugation, complex conjugation and par-
ity they transform like(

Ψ̄
−→
Dn

µ1...µn
Ψ

)c

= Ψ̄
←−
Dn

µn...µ1
Ψ , (A.32)(

Ψ̄
−→
Dn

µ1...µn
Ψ

)†
= (−1)hD Ψ̄

←−
Dn

µn...µ1
Ψ , hD = n .(A.33)(

Ψ̄
−→
Dn

µ1...µn
Ψ

)P

= Ψ̄
−→
D µ1...µn

n Ψ . (A.34)

The most general term in LπN with n-derivatives on the
nucleon can take one of the following forms:
a)

Ψ̄
(←−

Dn
µ1...µn

ΓĀ + (−1)hD+hĀ+hΓ ĀΓ
−→
Dn

µn...µ1

)
Ψ

(A.35)

Charge conjugation invariance, parity and elimination
of total derivatives require

(−1)pĀ+pΓ = (−1)hD+cĀ+cΓ = (−1)hĀ+hΓ = 1
(A.36)

b)

Ψ̄
(←−

Dn
µ1...µn

ΓiĀ− (−1)hD+hĀ+hΓ iĀΓ
−→
Dn

µn...µ1

)
Ψ

(A.37)

with

(−1)pĀ+pΓ = (−1)hD+cĀ+cΓ = −(−1)hĀ+hΓ = 1
(A.38)

Note the additional factor i in the term of type b) in
(A.37). Lorentz invariance is again obtained by a suitable
contraction of all Lorentz indices with gµν and εµνρσ.

In the last step we will show that by a suitable redef-
inition of the nucleon field Ψ we can eliminate a certain
class of operators of the form given in the two equations
above. For this purpose we say that an operator of type a)
or b) is of the order O(n, pm), if n derivatives act on the
nucleon fields and if the chiral order of Ā is Ā v O(pm).
Our strategy is the following: by a suitable redefinition of
the nucleon fields we can substitute an operator of the or-
der O(n, pm) by operators O with less than n-derivatives
on the nucleon field, i.e O v O

j<n
(j, pm) and by operators

with higher chiral order, O v O(n, pm+1). The successive
redefinitions of the nucleon fields eliminates this opera-
tor up to terms with no derivatives on Ψ , which can be
absorbed in the existing lagrangian LπN , and terms with
higher chiral order.
Applying the nucleon field transformation

Ψ =
[
1 + ĀΓ

−→
Dn−1

µ2...µn

]
Ψ ′ Ā v O(pm) ,

Γ ∈ Clifford Algebra (A.39)

to the leading order relativistic lagrangian L(1)
πN in (2.15)

generates the following lagrangian up to irrelevant fore-
factors

Lind = Ψ̄
′ [←−

Dn
µ1...µn

Γγµ1Ā

+(−1)hĀ+hΓ +hD Āγµ1Γ
−→
Dn

µ1...µn

]
Ψ ′

+ O
j<n

(j, pm) + O
l>n

(l, pm+1)

(A.40)

The products Γγµ1 and γµ1Γ can be reduced to elements
of the Clifford algebra and one obtains operators of the
type a) or b).
As an example we choose Γ = γµ. In this case the induced
lagrangian is found to be

Lγµ

ind = Ψ̄
′ [←−

Dn
µ1...µn

gµµ1Ā

+ (−1)hĀ+hD Āgµµ1−→Dn
µ1...µn

]
Ψ ′

+ Ψ̄
′ [←−

Dn
µ1...µn

Γσµµ1iĀ

−(−1)hĀ+hD iĀσµµ1−→Dn
µ1...µn

]
Ψ ′.

(A.41)

The first line is of type a) and the second is of type b). It is
also possible to obtain the reverse situation by substitut-
ing Γ → iΓ in (A.39). Notice that there is a sign difference
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between the two terms on each line. This means that one
of these lines can be eliminated via partial integration up
to operators with higher chiral order than Ā. The remain-
ing line can then be eliminated via the field redefinition
(A.39). Letting Γ run through all elements of the Clifford
Algebra one similarly finds

1.

Ψ̄ Ā Γµµ1−→Dn
µ1...µn

Ψ + h.c. w 0 , (A.42)

where Γµµ1 = σµµ1 , γ5σ
µµ1

2.

Ψ̄ Ā Γ
−→
Dn

µ1...µn
Ψ + h.c. w 0 , (A.43)

where Γ = 1, γ5
3.

Ψ̄ Ā Γ ν−→Dn
µ1µ2...µn

Ψ w Ψ̄ Ā Γµ1−→Dn
νµ2...µn

Ψ, (A.44)

where Γµ = γµ, γ5γ
µ

4.

Ψ̄ Ā εαβµµ1 Γµ
−→
Dn

µ1...µn
Ψ + h.c. w 0 (A.45)

5.

Ψ̄ Ā εαβµµ1 Γµλ
−→
Dn

µ1...µn
Ψ + h.c. w 0 (A.46)

6.

Ψ̄ Ā Γµ1−→Dn
µ1...µn

Ψ + h.c. w 0 . (A.47)

Here “w” stands for “equivalent to terms with less deriva-
tives on Ψ and higher order terms”. It should be noted,
however, that our elimination procedure only works, if the
chiral order of Ā is at least Ā ∼ O(p). In [35] the equa-
tions of motion have been used in order to remove six
equation-of-motion type operators in the SU(3) relativis-
tic lagrangian. The first five operators are the SU(3) ver-
sions of the respective terms in the above list. However,
the last operator in [35] does not appear in our list.

Finally we indicate those terms with derivatives on the
nucleon fields which cannot be eliminated by applying the
rules given above. Let Āν1...νm be a chiral operator of the
form (A.11), where all Lorentz indices are fully contracted
except for the indices ν1 . . . νm. It is understood that no
two of these indices are due to the same metric tensor
gνiνj and that no two or more of the indices are due to
the same antisymmetric tensor ε. The most general terms
with n-derivatives on the nucleon field of the form (A.35)
which cannot be eliminated by nucleon field redefinitions
are then

Ψ̄
(←−

Dn
µ1...µn

Γρ1Ā
ρ1µ1...µn (A.48)

+(−1)hD+hĀ+hΓ Āρ1µ1...µnΓρ1

−→
Dn

µn...µ1

)
Ψ

with Γρ1 = γρ1 , γ
5γρ1 and

Ψ̄
(←−

Dn
µ1...µn

Γρ1ρ2Ā
ρ1ρ2µ1...µn (A.49)

+(−1)hD+hĀ+hΓ Āρ1ρ2µ1...µnΓρ1ρ2

−→
Dn

µn...µ1

)
Ψ

Table 2. P, C, and h.c. transformation properties of the chiral
fields

C P h.c.

uµ uT
µ −uµ uµ

f+
µν −f+T

µν fµν
+ f+

µν

f−
µν f−T

µν −fµν
− f−

µν

vs
µν −vsT

µν vµν
s vs

µν

χ+ χ+
T χ+ χ+

χ− χ−T −χ− −χ−
−→∇µ

←−∇T
µ

−→∇µ ←−∇µ

Table 3. P, C, and h.c. transformation properties of the ele-
ments of the Clifford Algebra

C h.c P

1d 1d γ0 1d γ0 = 1d Ψ̄Ψ Ψ̄Ψ

γµ −γµT γ0γµγ0 = γµ† Ψ̄γµΨ Ψ̄γµΨ

γ5 γ5T γ0γ5γ0 = −γ5† Ψ̄γ5Ψ −Ψ̄γ5Ψ

γ5γµ
(
γ5γµ

)T
γ0γ5γµγ0 =

(
γ5γµ

)†
Ψ̄γ5γµΨ −Ψ̄γ5γµΨ

σµν − (σµν)T γ0 σµνγ0 = (σµν)† Ψ̄σµνΨ Ψ̄σµνΨ

with Γρ1ρ2 = σρ1ρ2 , γ
5σρ1ρ2 . An analogous expression

holds for terms of the form (A.37). Consequently, if n
derivatives act on the nucleon field the chiral order of Ā
must be of the order Ā ∼ O(pn+1) for Γ = Γ ρ1 and of the
order Ā ∼ O(pn+2) for Γ = Γ ρ1ρ2 . If one of the indices νj

in Aν1...νm is due to the antisymmetric tensor ε the chi-
ral order is further increased by at least one unit. These
observations restrict severely the possible terms with n
derivatives on the nucleon field of a given chiral order.

B Loop-Functions

We collect the loop integrals employed in this article. The
following definitions and results have been used

∆(M2
π) =

1
i

∫
ddk

(2π)d

1
M2

π − k2

= 2M2
π

[
Λ(µ) +

1
32π2 ln

M2
π

µ2

]
, (B.1)

with

Λ(µ) =
µd−4

16π2

{
1

d− 4
− 1

2
[ ln(4π) + Γ ′(1) + 1]

}
. (B.2)

The integral Jππ is defined as

Jππ(p2) =
1
i

∫
ddk

(2π)d

1
M2

π − k2

1
M2

π − (k − p)2
(B.3)



R. Baur, J. Kambor: Generalized heavy baryon chiral perturbation theory 523

with explicit representation

Jππ(p2) = J̄ππ(p2) + Jππ(0)

Jππ(0) = − 2Λ(µ)− 2
32π2

[
ln

M2
π

µ2 + 1
]

+O(d− 4)

r =
∣∣∣∣1− 4

M2
π

p2

∣∣∣∣
1
2

J̄ππ(p2) =


1

16π2

[
2− 2r arctan 1

r

]
, 0 < p2 < 4M2

π

1
16π2

[
2− r ln

∣∣∣ 1+r
1−r

∣∣∣ + iπr
]

, p2 > 4M2
π .

(B.4)

The integral K0 is defined as

K0(ω, p2) =
1
i

∫
ddk

(2π)d

1
M2

π − k2

1
M2

π − (k − p)2

× 1
v · k − ω

, (B.5)

and we find

K0(0, p2) =



1
16π
√

p2
ln 2Mπ−

√
p2

2Mπ+
√

p2
,

ω = 0 and 0 < p2 < 4M2
π

1
16π
√

p2

[
ln
√

p2−2Mπ√
p2+2Mπ

− iπ

]
,

ω = 0 and p2 > 4M2
π .

(B.6)

Finally, we have defined J0(ω) as

J0(ω) =
1
i

∫
ddk

(2π)d

1
M2

π − k2

1
v · k − ω

= − 4Λ(µ) ω +
ω

8π2

[
1− ln

M2
π

µ2

]
− 1

4π2

√
M2

π − ω2 arccos
−ω

Mπ
.

(B.7)

The derivative of J0(ω) with respect to ω at ω = 0 is given
by

J
′
0(0) =

1
i

∫
ddk

(2π)d

1
M2

π − k2

1
(v · k)2

= − 4Λ(µ)− 1
8π2

[
1 + ln

M2
π

µ2

]
.

(B.8)
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